If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+5=19
We move all terms to the left:
z^2+5-(19)=0
We add all the numbers together, and all the variables
z^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 14+2m-3+4m=5m-6 | | 10x-5x+150=10x+75 | | 233=148-y | | 6x-19=5x | | -y+27=207 | | -x+178=10 | | 48-2x=548x | | 2x+37=13x+26 | | d3− 1=3 | | -3x+(1/2)(-6x+11)=-3.5 | | X-5+x+15+2x+10=180 | | 3-x=97 | | q+10/2=4 | | 2.31(t+17)=0 | | 9x-45=2x+34 | | 2/3-m=0 | | ((1/2)*(y-(1/6))+(2/3)=(5/6)+(1/3)*(1/2-3y) | | 7z+4-9z=18 | | 7w=64 | | 63+X+2x+183-X=360 | | 63+X+2x+138-X=360 | | 11x-49=x+41 | | 4=q/3−3 | | -5=u/4-8 | | d-448=13 | | r-166=-80 | | -8u=-304 | | 3.5=x/12 | | 90+90+4x+10-20+X=360 | | (d)=-d2+3d+4 | | 2x-5-18x=(-1/2)(22x+10) | | B(t)=96 |